a2 United States Patent
Yup

US009209967B2

(10) Patent No.: US 9,209,967 B2
(45) Date of Patent: Dec. 8, 2015

(54) PRECALCULATED ENCRYPTION KEY
(75) Inventor: Nhu-Ha Yup, Phoenix, AZ (US)
(73) Assignee: Exelis, Inc., McLean, VA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1579 days.

(21) Appl. No.: 11/716,916
(22) Filed: Mar. 12,2007

(65) Prior Publication Data
US 2010/0027783 Al Feb. 4, 2010
(51) Imnt.ClL
Ho04L 9/06 (2006.01)
(52) US.CL
CPC ........... HO04L 9/0643 (2013.01); HO4L 9/0631

(2013.01); HO4L 2209/125 (2013.01); HO4L
2209/24 (2013.01)
(58) Field of Classification Search
CPC . HO4L 9/0631; HO4L 9/0643; HO4L 2209/24;
HO04L 2209/125
USPC  vieviecict e 713/176; 380/44
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,937,727 B2 8/2005 Yup etal.
2003/0223580 Al  12/2003 Snell
2006/0002549 Al 1/2006 Avasarala

2006/0034456 Al*  2/2006 McGough ... 380/30
2006/0126835 Al 6/2006 Kim et al.

2007/0081668 Al* 4/2007 McGrew etal. ............. 380/37
2008/0130889 Al* 6/2008 Qietal. ..o 380/257

FOREIGN PATENT DOCUMENTS

WO WO 2004/002057 12/2003
OTHER PUBLICATIONS

Niels Ferguson, “Authentication Weaknesses in GCM”, May 20,
2005, Microsoft, pp. 1-10.*

David A. McGrew et al., “The Galois/Counter Mode of Operation
(GCM)”, pp. 1-41.

Advanced Encryption Standard (AES), Federal Information Process-
ing Standards Publication 197, Nov. 26, 2001, pp. 1-47.

McGrew, D. et al., “The Galois/Counter Mode of Operation (GCM),”
available from http:csre.nist.gov/groups/ST/toolkit/BCM/docu-
ments/proposedmodes/gecm/gem-revised-spec.pdf, May 31, 2005.
Search Report mailed Jun. 18, 2006 in UK Patent Appln. No.
0804483.6.

AU Appln. No. 2008201156—Feb. 7, 2011 APO Examination
Report.

UK Appln. No. 0804483.6—Feb. 22, 2011 UK IPO Examination
Report.

ES Appln. No. 200800722—Mar. 7, 2011 Spanish Patent Office
(OEPM) Publication of the Technical Status and Written Opinion.
UK Appln. No. 0804483.6—Sep. 26, 2011 UK IPO Examination
Report.

DE Appln. No. 102008013785.5—Dec. 27,2011 German Patent and
Trademark Office Office Action.

DE Appln. No. 102008013785.5—May 24, 2012 German Patent and
Trademark Office Action.

* cited by examiner

Primary Examiner — Harunur Rashid
(74) Attorney, Agent, or Firm — Davidson, Berquist,
Jackson & Gowdey, LLP

(57) ABSTRACT

An authenticated encryption method includes receiving, by
an Advanced Encryption Standard (AES) engine, a cipher key
and computing a hash key using the received cipher key. The
computed hash key is stored in a storage memory. The AES
engine then receives a packet of data and encrypts the packet
of data using the received cipher key. The hash key from the
storage memory is sent to a GHASH engine which is used to
authenticate the packet of data. Encrypting the packet of data
is performed after the hash key is stored in the storage
memory. Input flow of the packet of data is enabled after the
hash key is stored in the storage memory.

20 Claims, 8 Drawing Sheets

)
/ DATA
encrkey (1-4) [ acs ENGINE
(1-4)
m | Fom
GHASH
ENGINE
ghash_key (1-4) (1-4)
/
b
SAMEMORY |« precompute_ghash_key (1-4)

precompute_decr_key (1-4)



U.S. Patent Dec. 8, 2015 Sheet 1 of 8 US 9,209,967 B2

1a
R veoe | s DATA
v
: PLAINTEXT
ADDTL AUTH DATA
: i v 12
§ § GCM ENCRYPTION
i 5 PPHER AUTHENTICATION
: : THe
N oo i
HEADER | SEQ. ik oy
5y
HEADER | SEQ ENCRIPTED DATA oy
v AUTHENTIGATION
| THe
: OPHERTEXT
ADDTL AUTH DATA
Y v v 19
E [ GOM DECRYPTION ]«—
i PLAIN
: 5 TEXT
" ¥ ¥
HEADER | SEQ. DATA

FIG. 2



U.S. Patent Dec. 8, 2015 Sheet 2 of 8 US 9,209,967 B2
30
/
DATA/CONTROL
| » 32 I—
DATA
encr key (1-4) | AESENGINE |
(1-4)
33T FSM
GHASH
ENGINE
ghash_key (1-4) N (1-4)
(
32
recompute_ghash_key (1-4
SAMEMORY | précompute_ghasn_ey (1-4)
precompute_decr_key (1-4)
(
34

FIG. 3



U.S. Patent Dec. 8, 2015 Sheet 3 of 8 US 9,209,967 B2

40
M3 41b
COUNTER O INCR’ COUNTER 1 INCR COUNTER 2
EK/ s Ek
b 43 @z N3
433 PLAINTEXT 1 45 PLAINTEXT 2 455
CIPHERTEXT 1 | CIPHERTEXT 2
45¢ 45d
[//mUH';H/ [/mult«.H/
PN Ny e
AUTH DATA 1 LEN(A) | LEN(C) 45¢

444

AUTH TAG

FIG. 4



U.S. Patent Dec. 8, 2015 Sheet 4 of 8 US 9,209,967 B2
50
51a 51b
COUNTER 0 INCR COUNTER 1 INCR COUNTER 2
Ek: s Ek
53a PLAINTEXT 1 T el PLAINTEXT 2 55h
CIPHERTEXT 1 CIPHERTEXT 2
55¢ 55d
70 ‘
%ﬂU]t’;H/ [/mu|t<H/ 3
T 542\ 54b ¢
AUTH DATA 1 LEN(A) ITLEN(C)

FIG.

% 55f

AUTH TAG

5



U.S. Patent Dec. 8, 2015 Sheet 5 of 8 US 9,209,967 B2

GHASH QUTPUT 62 PLAINTEXT/CIPHERTEXT

61K DATAKTM MM

GHASH x4 “ ! OFIF0 x 4
64

63 ByteByByteMux
SAOB data/control

_______________ - ————_———1_________ ___
-1
> 64bit clear_r hethitmx |66 g7 key/cxt}c G |} 60
I mx/eg a
S £ X 4
65 ‘|‘ 1

¢+ pldecr 01 pt_decr 2,3

T T 680 ’
70a\}f'—| 632 ; ‘
~| AddRoundKey || AddRoundKey 71

|
|
|
|
|
|
|
|
MixCol & MixCol & 72 !
i i ECH4 '
69 InyMnxCoI In_vaCol \” R et 73 !
Plaind ShiftRow & || ShiftRow & € W) ,
i , InvohiftRow §| InvShiftRow 0 |
Pans || Byesubs || BreSnd ‘ |
Plain? InvByteSub | InvByteSub J o N .
Plin Input Register || Input Register L 70p |
A —‘ * 74b~ *gl !

i | Addroundey | | Addrounchey v Expanded Key \i/ £
7| 74a A AAA [TVORCTRE ). 79 T !
i FSM 4 EoS | V/ORCTRS !

N FSu3 w g 4ch3 N/ORCTR? eyt | !

I Fsu2 2XBIF Lgme WV/OR/CTRY ke3 ||

I g7 & 1T gy o7

| T - Keyf i 81

| A |

e J

SR PR S, E————

82 : m! , SAIBFdata/gg\ntrol
IFIFO cowroL | (FromSA)
x4 SIGNALS
I
8 AT AYY




U.S. Patent

data_ctl

Dec. 8, 2015 Sheet 6 of 8 US 9,209,967 B2
N
92 93 // 94
& 2 S
dlregs P/ fowtsm |77 9080 ol logic
/ Z
ﬂow_ns/cil )L flow_ns/cs’L 128 mux flow_nsfcs lstart_ghash
A

¥
/ 3 [g% 191:64% 3)1
% 'E ? S| RN T
B oMU 4~
| B1 | [8: 0
align 15] /
g7 U0 9
B2 1116 100
[ x
/ 22]
95—~ / g b0 16
padding/
98/% d be
G077 o
102- 105
fo_inf
Cg_;l_[lg%fg-ctl mac_req(127:0] Z %
oy 44 /
7
— Ieg
hash_key é [127:0] 3 106
10%% T 403
B4 mu 109
/ {74
sl / Z % / dartgg‘ data_:;ut
- % % [63:0]
// GRASH i "~
P 107




U.S. Patent

Dec. 8, 2015

140

Sheet 7 of 8

KEY EXCHANGE OR
KEY FILL TO GET
ENCR-KEY

<

CALCULATE GHASH KEY H
USING AES ENGINE

~

143"

SAVE THE ENCR_KEY
AND GHASH_KEY
HIN SA MEMORY

Sz

144 |

ENABLE PACKET FLOW

~7

145—"

AES ENGINE
ENCR PACKET USING
CTR MODE

N

146~ _

GHASH ENGINE
AUTHENTICATE USING
GALOIS MULTIPLIER

FIG. 8

KEY EXCHANGE OR
KEY FILL IS ONCE
EVERY HUNDREDS OR
THOUSANDS OF PACKET

10 CLKS FOR 128 KEY SIZE
12 CLKS FOR 192 KEY SIZE
14 CLKS FOR 256 KEY SIZE

US 9,209,967 B2



U.S. Patent

Dec. 8, 2015

150

Sheet 8 of 8

KEY EXCHANGE OR
KEY FILL TO GET
DECR-KEY

<7

CALCULATE GHASH KEY H
USING AES ENGINE

1631

N

SAVE THE DECR_KEY
AND GHASH_KEY
H IN SA MEMORY

<7

154 |

ENABLE PACKET FLOW

~7

165

AES ENGINE
DECR PACKET USING
CTR MODE

~

156~

GHASH ENGINE
AUTHENTICATE USING

GALOIS MULTIPLIER

FIG. 9

KEY EXCHANGE OR
KEY FILL IS ONCE
EVERY HUNDREDS OR
THOUSANDS OF PACKET

10 CLKS FOR 128 KEY SIZE
12 CLKS FOR 192 KEY SIZE
14 CLKS FOR 256 KEY SIZE

US 9,209,967 B2



US 9,209,967 B2

1
PRECALCULATED ENCRYPTION KEY

FIELD OF THE INVENTION

The present invention relates, in general, to a system and
method for providing authenticated encryption and decryp-
tion. More specifically, the present invention relates to a
method for calculating an encryption key in a system having
multiple channels of advanced encryption standard (AES)
block cipher algorithms.

BACKGROUND OF THE INVENTION

When two parties communicate, they often need to protect
both the privacy and the authenticity of the transmitted data.
Protecting the privacy of the data ensures that unauthorized
parties will not understand the content of transmissions. Pro-
tecting the authenticity of the data provides assurance to the
receiving party that the actual sender of a message coincides
with the claimed sender of the message. It thereby provides
assurance to the receiver that the message was not acciden-
tally or intentionally modified in transit.

In an authenticated-encryption method, the sender
encrypts a message using a key and a nonce (also called an
initialization vector, or IV) to yield a ciphertext. The receiver
decrypts the ciphertext using a key and a nonce to yield either
amessage or a special symbol for invalid that indicates to the
receiver that the ciphertext should be regarded as inauthentic.

Privacy-only encryption computes a ciphertext from a
plaintext, a key, and a nonce. A message authentication code
(MAC) computes an authentication tag from a message and a
key. To MAC a message means to compute its authentication
tag using a message authentication code.

By way of further background, the advanced encryption
standard (AES) block cipher algorithm, or AES cipher, is an
iterative cipher algorithm, meaning the data is similarly
manipulated a predetermined number of rounds. The block
length is fixed to 128 bits and the key length may be indepen-
dently setto 128, 192 or 256 bits. The AES cipher also allows
for a variable number of rounds (Nr), the total of which may
be 10, 12 or 14, and which depend on the block length and key
length.

The AES cipher encrypts a block of data by performing 9,
11 or 13 complete round transformations followed by a final
incomplete round transformation. The incomplete round
transformation includes one less step than a complete round
transformation. The data string that is operated upon during
each round is called a “State,” which may be represented as a
rectangular array of bytes having four rows and a number of
columns (Nb) that varies with the block length. Specifically,
the value of Nb is equal to the block length (i.e., 128, 192 or
256) divided by 32, meaning it has a value of either 4, 6 or 8.
Each of the complete rounds includes the following four
transformations, performed in the following order: (1) Byte-
Sub; (2) ShiftRow; (3) MixColumn; and (4) AddRoundKey.
The incomplete round transformation does not include the
MixColumn transformation.

Similar to encryption, the AES cipher decrypts data by
performing the same number of complete rounds followed by
anincomplete round. Because the encryption transformations
are invertible, the State of each decryption round is operated
on by the inverse of the above-noted transformations. More-
over, the properties of the transformations and inverse trans-
formations allow for symmetry in the encryption and decryp-
tion algorithms. In other words, each complete decryption
round includes the following inverse transformations, which
may be performed in the listed order (1) InvByteSub; (2)

10

20

25

30

40

45

55

2

InvShiftRow; (3) InvMixColumn; and (4) InvAddRoundKey.
Again, similar to encryption, the incomplete decryption
round transformation does not include the InvMixColumn
transformation.

Greater detail of the AES cipher may be found in a Federal
Information Processing Standards Publication (FIPS-PUBS)
issued by the National Institute of Standards and Technology
(NIST). The publication is the Advanced Encryption Stan-
dard (AES), dated Nov. 26, 2001, and may be obtained elec-
tronically at http://csrc.nist.gov/publications/. This publica-
tion is incorporated herein, in its entirety, by reference.

The AES cipher supports different operation modes,
including cipher block chaining (CBC), electronic codebook
(ECB) and Galois counter mode (GCM). The GCM is a block
cipher mode of operation that uses hashing over a binary
Galois field to provide authenticated encryption. The detailed
document titled “The Galois/Counter Mode of Operation
(GCM)” may be found at csrc.nist.gov/CryptoToolkit/modes/
proposedmodes/gem/gem-spec.pdf. This publication is also
incorporated herein, by reference, in its entirety.

A conventional GCM-AES block cipher system includes
encryption performed during 10, 12 or 14 rounds using round
keys. A hash key is calculated from the round keys to provide
authenticated encryption for every frame or packet that is
transmitted to a remote receiver. This requires 10, 12 or 14
clock cycles for every frame or packet that is transmitted by
the sender. Similarly, during decryption, the receiver requires
10, 12 or 14 clock cycles to calculate the hash key from the
round keys for every frame or packet. This disadvantageously
results in increased throughput and delay by the processor in
authenticating the respective frame or packet. The present
invention addresses and, as one of its features, solves this
deficiency.

SUMMARY OF THE INVENTION

To meet this and other needs, and in view of its purposes,
the present invention provides an authenticated encryption
method. The method includes the steps of: (a) receiving, by an
Advanced Encryption Standard (AES) engine, a cipher is key;
(b) computing, by the AES engine, a hash key using the
received cipher key; (c¢) storing the computed hash key in a
storage memory; (d) receiving, by the AES engine, a packet of
data; (e) encrypting, by the AES engine, the packet of data
using the received cipher key; (f) receiving the hash key, by a
GHASH engine, from the storage memory; and (g) authenti-
cating the packet of data, by the GHASH engine, using the
hash key. The encrypting step includes using a counter mode
in the AES engine to encrypt the packet of data. Using the
counter mode includes iteratively XOR-ing (a) a plaintext
portion of the packet of data with (b) an encrypted value of
counter data using the cipher key, and thereby obtaining a
ciphertext of data. The authenticating step includes transmit-
ting the ciphertext to the GHASH engine, and iteratively
multiplying the ciphertext, by the GHASH engine, using the
hash key. Encrypting the packet of data is performed after the
hash key is stored in the storage memory.

After the hash key is stored in the storage memory, the
input flow of the packet of data is enabled. The packet of data
is encrypted using the encryption key and, after enabling the
input flow of the packet of data, the packet of data is authen-
ticated using the hash key stored in the storage memory.

The hash key is computed by performing 10 rounds of key
expansions on the received cipher key, if the received cipher
key is a 128 bit block of data; and by performing 12 rounds of
key expansions on the received cipher key, if the received
cipher key is a 192 bit block of data; and by performing 14



US 9,209,967 B2

3

rounds of key expansions on the received cipher key, if the
received cipher key is a 256 bit block of data.

The method of the invention includes receiving at least two
separate cipher keys from respective data channels, and com-
puting at least two separate hash keys corresponding to the at
least two separately received cipher keys. Receiving the
packet of data includes receiving during an interval of time a
predetermined number of packets of data. Calculating the
hash key includes calculating the hash key once per the inter-
val of time, and storing the computed hash key includes
storing the computed hash key once per the interval of time.

Another embodiment of the invention includes an authen-
ticated encryption module. The encryption module includes
an AES engine for using a cipher key to compute a hash key,
a storage memory for storing the computed hash key, and a
GHASH engine for receiving the computed hash key stored in
the storage memory for authenticating a packet of data. The
AES engine encrypts the packet of data to form ciphertext.
The GHASH engine receives the ciphertext from the AES
engine to multiply the received ciphertext with the computed
hash key. An authentication tag is computed using the multi-
plied ciphertext with the computed hash key. A controller
enables input flow of the packet of data, after the computed
hash key is stored in the storage memory. The packet of data
includes additional authenticated data (AAD), and the
GHASH engine is configured to receive the AAD to multiply
the AAD with the computed hash key.

The AES engine is configured to receive at least two dif-
ferent encryption keys from respective data channels. The
AES engine includes two encryption modules for encrypting
atleast two different packets of data received from the respec-
tive data channels using the at least two different encryption
keys. The packet of data includes multiple packets of data,
and the hash key is computed by the AES engine once for all
the received multiple packets of data. The hash key is stored
in the storage memory once for all the received multiple
packets of data.

It is understood that the foregoing general description and
the following detailed description are exemplary, but are not
restrictive, of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention is best understood from the following
detailed description when read in connection with the accom-
panying drawings:

FIG.1is a functional block diagram showing an exemplary
encryption and authentication of a packet (or frame) of data.

FIG. 2 is a functional block diagram showing an exemplary
decryption and authentication of an encrypted packet (or
frame) of data.

FIG. 3 is a block diagram of an AES-GCM encryption
module with an external SA memory, in accordance with an
embodiment of the present invention.

FIG. 4 is a functional block diagram of an authenticated
encryption operation showing block cipher encryption and
multiplication over a Galois field.

FIG. 5 is a functional block diagram of an authenticated
decryption operation, showing block cipher decryption and
multiplication over the Galois field.

FIG. 6 is a block diagram of an AES engine module that
includes four channels of input data flow and two cipher
transformation modules, in accordance with an embodiment
of the present invention.

FIG. 7 is a block diagram of a GHASH engine, in accor-
dance with an embodiment of the present invention.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 8 is a flow diagram depicting a method for authenti-
cating a packet of data, in accordance with an embodiment of
the present invention.

FIG. 9 is a flow diagram of a method for authenticating an
encrypted packet of data, in accordance with an exemplary
embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

The present invention includes an AES-GCM mode of
operation. The GCM has two operations, authenticated
encryption and authenticated decryption. The authenticated
encryption operation has four inputs, each of which is a bit
string, as follows:

(1) a secret key K, whose length is appropriate for the

underlying block cipher;

(2) an initialization vector IV (nonce);

(3) a plaintext P; and

(4) additional authenticated data (AAD), which is denoted

as A. This data is authenticated, but not encrypted.

The authenticated encryption operation has two outputs as
follows:

(1) a ciphertext C, whose length is exactly that of the

plaintext P; and

(2) an authentication tag T. The length of the tag is denoted

ast.

If the block cipher width is The authenticated decryption
operation, and len( ) is the number of bits in an argument, then

Oslen(P)=(232-2)w,
Oslen(4)=2""2,
Oslen(IV)=2""2,
len(C)=len(?), and

len(Z)=t=w.

An exemplary encryption and authentication of a packet
(or frame) of data is shown in FIG. 1. As shown, input packet
11 includes a header field, a sequence field, and a plain data
field. The data field is encrypted and authenticated by GCM
encryption module 12. The header field may be authenticated
in the GCM encryption module by including it in the AAD
field. The sequence field may be included in the IV and sent to
the GCM encryption module. The GCM encryption module
thus encrypts and authenticates packet 11. The output packet,
shown as packet 13, is transmitted to the receiver and includes
(1) the encrypted data field, (2) the authentication tag which is
carried in the integrity check value (ICV) field, and the
appended (3) header field and (4) sequence field.

By including the sequence number in the IV, the require-
ment that the IV values be unique may be satisfied. The data
that forms the IV has to be known by both the encryption side
and the decryption side, but the IV needs not to be included in
the packet and may be sent separately. It will be appreciated
that the length of the plaintext of input packet 11 is the same
as the length of the ciphertext of output packet 13.

Referring next to FIG. 2, there is shown GCM decryption
module 16 which decrypts and verifies the authenticity of the
received input packet 15. The GCM encryption module
decrypts the ciphertext to provide the plaintext of output
packet 17. The authentication tag is compared to an internally
calculated authentication tag to verify the authenticity of
input packet 15. The final output packet includes the header
field and the sequence field, as shown.

The authenticated decryption operation has five inputs: K,
1V, C, A, and T. The authenticated decryption operation has



US 9,209,967 B2

5

only a single output, either the plaintext value P or a special
symbol FAIL that indicates that the input data is not authentic.
The ciphertext C, the initialization vector IV, the additional
authenticated data A and the tag T are authentic for key K,
when they are generated by the encryption operation of GCM
encryption module 12 with inputs K, IV, A and plaintext P.
The authenticated decryption operation of GCM decryption
module 16, with high probability, returns FAIL whenever its
inputs were not created by the encryption operation with the
identical key.

The additional authenticated data A is used to protect infor-
mation that needs to be authenticated, but which must be left
unencrypted. When using GCM to secure a network protocol,
the A data may include addresses, ports, sequence numbers,
protocol version numbers, and other fields that indicate how
the plaintext should be handled, forwarded, or processed. In
many situations, it may be desirable to authenticate these
fields, though they must be left in the clear to allow the
network or system to function properly. When this data is
included in the AAD, authentication is provided without
copying the data into the ciphertext.

The primary purpose ofthe IV is to be a nonce, that is, to be
distinct for each invocation of the encryption operation for a
fixed key. It is acceptable for the IV to be generated randomly,
so long as the distinctness of the IV values is highly likely.
The IV is authenticated, and it is not necessary to include it in
the AAD field.

The strength of the authentication of P, IV and A is deter-
mined by the length t of the authentication tag. When the
length of P is zero, GCM acts as a MAC on the input A. The
mode of operation that uses GCM as a stand-alone message
authentication code is denoted as GMAC.

The equations used by the CGM encryption module 12,
shown in FIG. 1, will now be described. The following
assumes that the block cipher width, w, is 128 bits.

Let n and u denote a pair of positive integers, such that the
total number of bits in the plaintext is (n-1)128+u, where
1=u=128. The plaintext consists of a sequence of n bit strings,
in which the bit length of the last bit string is u, and the bit
length of the other bit strings is 128. The sequence is denoted
P,,P,,...,P, |, P*  andthebitstrings are called datablocks,
although the last bit string, P*,, may not be a complete block.
Similarly, the ciphertext is denoted as C,,C,, ..., C,_;, C*,,
where the number of bits in the final block C*, is u. The
additional authenticated data A is denoted as A, A,, . . .,
A,,_,, A* ., where the last bit string A*,, may be a partial
block of length v, and m and v denote the pair of positive
integers such that the total number of'bits in A is (m-1)128+v
and 1=v=128.

The authenticated encryption operation is defined by the
following equations, where w is used as the block cipher
width:

H=E(X,0")

Yo=IV|03!1 if lenIV)=w-32
Yo=GHASH(#H,{ },IV) otherwise
Y=iner(Y; ) fori=1, ..., n
C=PEKY) fori=1, ..., n-1
C*,=P*, OMSB (E(K.Y,))

T=MSB(GHASH(H,4,C)BE(K, Yy))

Successive counter values are generated using the function
incr( ), which treats the rightmost 32 bits of its argument as a

10

15

20

25

30

35

40

45

50

55

60

65

6

nonnegative integer with the least significant bit on the right,
and increments this value modulo 232.

The function len( ) returns a 64-bit string containing the
nonnegative integer describing the number of bits in its argu-
ment, with the least significant bit on the right. The expression
0’ denotes a string of I zero bits, and A||B denotes the concat-
enation of two bit strings A and B. The function MSB,(S)
returns the bit string containing only the most significant
(leftmost) t bits of S, and the symbol { } denotes the bit string
with zero length.

The function GHASH is defined by GHASH(H, A,
C)y=X,,1s1> Where the inputs A and C are formatted as
described above, and the variables X, fori=0, . .., m+n+1 are
defined as follows:

X=0i=0
X=X, D4)Hi=1,..., m-1
X=X, DA™, [0v7)-H i=m
X=X, DC,_ )yHi=m+l,..., m+n-1
XXy i  DCHNO ) H i=mtn

X=X, ., Dlen()|len(C))-H i=m+n+1

The authenticated decryption operation is similar to the
encrypt operation, but with the order of the hash step and
encrypt step reversed. More formally, it is defined by the
following equations:

H=E(K,0")
Yo=IV|03!1 if len(IV)=w-32
Yo=GHASH(#,{ },IV) otherwise
T'=MSB (GHASH(H, 4, OYBEX, Yy))
Y=iner(Y; ) fori=1,..., n
P=CHEKY,) fori=l, ..., n-1

P* =C* DMSB(EK.Y,)

The tag T' that is computed by the decryption operation is
compared to the tag T associated with the ciphertext C. If the
two tags match (in both length and value), then the ciphertext
is returned. Otherwise, the special symbol FAIL is returned.

Referring next to FIG. 3, there is shown a functional block
diagram of an AES-GCM encryption module, generally des-
ignated as 30. The SA memory 34, which is external to the
AES-GCM encryption module, stores the encryption key K
and the hash key H. As described above,

H=E(K,0")

which is the block cipher encryption of the value O™ with the
key K.

The encryption key K is provided to AES engine 31 and the
hash key H is provided to GHASH engine 32. The finite state
machine (FSM), generally designated as 33, receives input
control signals and controls AES-GCM encryption module
30. The AES engine 31 may be operated in the electronic
codebook (ECB) mode, the cipher block chaining (CBC)
mode and the counter (CTR) portion of the GCM for both
encryption and decryption. The AES engine supports difter-
ent key block sizes, including 128 bits, 192 bits and 256 bits.

The AES engine executes an algorithm having operations
performed on a two-dimensional array of bytes called the
Sate. The State consists of four rows of bytes, each containing



US 9,209,967 B2

7

Nb bytes, where Nb is the block length divided by 32. The
State includes an input and an output. At the start of the cipher
and inverse cipher, the input, which is the array of input bytes,
is copied into the State array. The cipher or inverse cipher
operations are then conducted on this State array, after which
its final value is copied to the output, which is another array of
output bytes.

For the AES engine algorithm, the length of the input
block, the output block and the State is 128 bits. This is
represented by Nb=4, which reflects the number of 32-bit
words (number of columns) in the State. The length of the
cipher key, K, is 128, 192 or 256 bits. The key length is
represented by Nk=4, 6 or 8, which reflects the number of
32-bit words (number of columns) in the cipher key. The
number of rounds performed during the execution of the
algorithm is dependent on the key size. The number of rounds
is represented by Nr, where Nr=10 when Nk=4, Nr=12 when
Nk=6, and Nr=14 when Nk=8.

For both its cipher and inverse cipher, the AES engine
algorithm uses a round function that is composed of four
different byte-oriented transformations: (1) byte substitution
using a substitution table (S-box), (2) shifting rows of the
State array by different offsets, (3) mixing the data within
each column of the State array, and (4) adding a round key to
the State. These transformations (and their inverses) are
described in the AES standard publication referred to above
and incorporated herein by reference. These key-block-round
combinations are summarized in the following table:

Number of
Key Length Block Size Rounds Clock
(Nk words) (Nb words) (N1) Periods
AES-128 4 4 10 10
AES-192 6 4 12 12
AES-256 8 4 14 14

At the start of the cipher, the input is copied to the State
array, as described above. After an initial round key addition,
the State array is transformed by implementing a round func-
tion 10, 12 or 14 times (depending on the key length), with the
final round differing slightly from the first Nr-1 rounds. The
final State is then copied to the output, as described above.

As described, the cipher includes four transformations.
These individual transformations—SubBytes( ), Shift-
Rows( ), MixColumns ( ), and AddRoundKey ( )—process the
State. All Nr rounds are identical with the exception of the
final round, which does not include the MixColumns( ) trans-
formation.

It will be appreciated that the aforementioned cipher may
be inverted and then implemented in reverse order to produce
an inverse cipher for the AES engine algorithm. The indi-
vidual transformations used in the inverse cipher—Inv-
ShiftRows( ), InvSubBytes( ), InvMixColumns( ), and
AddRoundKey( )—process the State and are described in the
AES standard publication.

The present invention, if the key size is 128 bits, computes
the hash key H using AES engine 31 by executing 10 rounds
of computations (10 clock periods). After the last round is
computed, the hash key H is sent to SA memory 34 for
storage. Similarly, the present invention, if the key size is 192
bits, computes the hash key H by executing 12 rounds of
computations (12 clock periods), and then storing the hash
key H in SA memory 34. Furthermore, the present invention,
if the key size is 256 bits, computes the hash key H by

10

15

20

25

30

35

45

50

55

60

65

8

executing 14 rounds of computations (14 clock periods).
After the last round, the present invention stores the hash key
H in the SA memory.

The AES engine is advantageously programmed to calcu-
late and store the hash key H prior to the time of key exchange
between the sender and the receiver. Such pre-calculation
saves 10, 12 or 14 clock cycles per packet or frame that would
otherwise be required to calculate the hash key H every packet
or frame.

Referring next to FIG. 4 and recalling the authenticated
encryption equations, the manner in which the authentication
tag is determined is exemplified by the authenticated encryp-
tion operation, generally designated as 40. The authentication
operation 40 includes two main functions used in GCM which
are the block cipher encryption and the multiplication over
the field GF (2'2®). As shown, the E, function (designated as
43a, 43b and 43¢) denotes the block cipher encryption using
the key K. The mult,, function (designated as 44a, 445, 44¢
and 44d) denotes multiplication in GF (2'*®) by the hash key
H. The incr function (designated as 41a and 415) denotes the
counter (CTR) increment function. For simplicity, only a
single block of additional authenticated data (designated
Auth Data 1) and two blocks of plaintext (designated Plain-
text 1 and Plaintext 2) are shown.

The addition of two elements X and Y in GF (2'2®) consists
of'adding a polynomial representing X with another polyno-
mial representing Y. This operation is identical to the bitwise
exclusive-or (XOR) of X and Y. The XOR operations are
shown in FIG. 4 as XOR 454 through XOR 45/ The multi-
plication of two elements X and Y consists of multiplying a
polynomial representing X with polynomial representing Y,
then dividing the resulting 256-bit polynomial by a field
polynomial; a 128-bit remainder is the result. The field poly-
nomial is fixed and determines the representation of the field.
The GCM uses the polynomial =1+o+a>+a”+0'28,

In general, referring to FIG. 4, CTR 414, b provides the Yi
counter output, which is encrypted with the encryption key K
in Ex module 435, ¢. The encrypted output is XOR-ed with
plaintext 1, 2, thereby obtaining ciphertext 1, 2. Separately,
the CTR state Yo (counter 0) is encrypted by E module 43a
to obtain E(K,Yo). The Auth Data 1 is operated on by mult,,
(44a) and then XOR-ed with ciphertext 1, which is then
operated on by mult,, (445). The output of mult,, (445) is
XOR-ed with ciphertext 2, which is then operated on by
mult;, (44¢). The output of mult,, (44¢) is XOR-ed with the
concatenation of bit strings A and C, which is finally XOR-ed
with E(K,Yo) to obtain the authentication tag T, described
previously. It will be appreciated that the previously
described variable Xi results from the iterative operations of
multiplying the hash key H with the ciphertext or the AAD. In
turn, the GHASH function is defined by GHASH (H, A,
O)=Xi.

Referring next to FIG. 5 and recalling the previously
described authenticated decryption equations, the manner in
which the authentication tag is obtained during the decryption
operation is shown as method 50. The method 50 is similar to
method 40, except that the ciphertext, when XOR-ed with the
output of the E, module, produces the plaintext. As shown,
the E - module (designated as 53a, 535 and 53¢) produces the
block cipher decryption using the key K. The mult,, function
(designated as 54a, 54b, 54¢ and 54d) denotes multiplication
in GF (2'%®) by the hash key H. The incr function (designated
as 51a and 514) denotes the counter (CTR) increment func-
tion. For simplicity, only a single block of additional authen-
ticated data (designated Auth Data 1) and two blocks of
ciphertext (designated ciphertext 1 and ciphertext 2) are
shown.



US 9,209,967 B2

9

An exemplary block diagram of an AES engine module is
shown in FIG. 6, generally designated as 60. The AES engine
module includes four channels of data flow, which share two
cipher transformation modules. The two cipher transforma-
tion modules are shown designated as 70a and 705. It will be
understood that up to four cipher transformations modules
may be included, so that each of the four channels has its own
cipher transformation module. Four input registers 82 are
depicted in the figure. The input registers 82 are first-in-first-
out (FIFO) registers, though other types of registers may be
used. The input registers each receives a data string of a first
predetermined bit length from its corresponding system chan-
nel. In the exemplary embodiment, the predetermined bit
length (designated 85) is 64 bits, though larger data strings
may be used.

The control signals 83, key 84 (one key data per channel)
and the state array input buffer (SAIB) control (also 84) are
provided as input signals to AES engine module 60. The
control signals are coupled, one each, to four finite state
machine controllers (FSMs) 76. There is one FSM 76 asso-
ciated with each channel, each of which, in response to the
received control signals, controls the operation of AES engine
module 60.

The input registers 82 are coupled to buffer register 80a,
804. Each buffer register, under control of one of the FSMs,
selectively retrieves and stores data strings of a predetermined
bit length from one of FIFO registers 82, until a data block of
a predetermined bit length is stored in buffer input FIFO
register 80a, 805 (BIF register 80a, 805). The predetermined
bit length of the data block is a block length supported by the
AES block cipher, namely 128-bit length.

The AES engine module 60 includes a cipher key storage
register 81 for each system channel. The cipher key storage
register 81 receives from the SA the cipher key K associated
with each system channel (four channels). Under control of
its respective FSM, the cipher key storage register transmits
the stored cipher key K to a key expansion block 75. The key
expansion block 75 generates a single round key by perform-
ing a single key expansion operation for each round of the
AES block cipher.

The output data of buffer register 80a, 805 is coupled to
XOR circuit 77, 78 to perform the logical XOR operation.
Each XOR circuit receives the data block from each of buffer
registers 80a, 805 and another data block from each of four
IV/OR/CTR registers 79. These two blocks of data are XOR-
ed. There is one IV/OR/CTR register for each system chan-
nel. These registers store the IV (nonce) for calculating Yo
during the counter O-state of the AES-GCM mode, and/or
calculating Yi during the other counter (CTR) states of the
AES-GCM mode. Two other modes are also shown, namely
the ECB mode and the CBC mode. Responsive to an ECB/
CBC control signal, data stored in IV/OR/CTR registers 79 is
transmitted to XOR circuit 77, 78, or a string of zeros is
transmitted to XOR circuit 77, 78. Inthe CBC mode, the IV is
XOR-ed with the data in BIF 80a, 805 before being sent to
encryption modules 70a, 705. In the ECB mode, no IV is
used. In the CTR/GCM mode, counter 1, 2, 3, 4 is used to
input data into encryption modules 70a, 705 for encryption
operation. The OR in IV/OR/CTR 1-4 (designated as 79) is an
output register, which stores the encrypted data provided
from encryption modules 70qa, 704.

Prior to each round of the AES block cipher, key expansion
block 75 transmits the round key to one of AddRoundKey
functional blocks 74a, 74b. There may be up to four
AddRoundKey functional blocks (one for each channel). The
data block from one of buffer register 80a, 805 which was
XOR-ed with the data block is from register 79, is transferred

15

40

45

50

10

to AddRoundKey functional block 74a, 745. The AddRound-
Key function block 74a, 745 receives a data block and per-
forms an initial AddRoundKey transformation on the data
block in accordance with the AES block cipher. The data
block from the AddRoundKey functional block 74a, 745 is
then transmitted to an input register of cipher transformation
module 70a, 705 (one per channel).

The data block transmitted to the cipher block input regis-
ter of transformation blocks 70a, 705 is then operated on by
the AES block cipher transformations, for either encryption
or decryption. Specifically, if the received control signals
instruct the FSM for the particular channel to encrypt data,
then the encryption transformations are operative. Con-
versely, if the received control signals instruct the FSM for the
particular channel to decrypt data, then the decryption trans-
formations are operative. The transformation functions share
combined logic circuitry for carrying out the encryption or
decryption transformations. Thus, a first transformation per-
forms either the ByteSub or InvByteSub transformation on
the received data block. Likewise, the second and third trans-
formations perform either the ShiftRow or InvShiftRow and
MixCol or InvMixCol, respectively, based on the signal
received from the particular channel FSM. The data block is
successively operated upon by these transformations and then
transmitted to a second AddRoundKey block of transforma-
tion block 70a, 705.

After this initial transformation round, the data block is fed
back to the cipher block input register for the next transfor-
mation round. In addition, depending on the state, the data
block is transmitted to encrypted counter FIFO (ECF) 73 (one
per channel) and/or IV/OR/CTR 79 (one per channel).

If the data block is being decrypted, then the data block is
fed back to is the cipher block input register of transformation
module 70a, 706, by way of (1) plaintext decryption registers
68a, 68b (one per channel) (2) multiplexer 71 and (3) XOR
circuit 72. The plaintext decryption registers 68a, 685 receive
data from plaintext registers 69 (one per channel).

After the predetermined number of transformation rounds
is completed, the last round key in key expansion block 75 is
stored in a memory external to AES-GCM engine module 60.
This last round key is then available for use as the initial round
key value during a subsequent decryption operation. The
round key value is transmitted to the SA memory (FIG. 3) by
way of key/cbc-data multiplex register 67 included in the SA
output buffer (SAOB) data/control.

The data strings transferred to buffer register 80a, 805 from
one of the channel-input registers 82 are also transferred to
the appropriate plaintext storage register 69. The data strings
are stored in the plaintext storage register until the other data
strings have been encrypted (or decrypted) a predetermined
number of rounds by the encryption/decryption circuitry. The
so-called “plaintext” data in plaintext storage register 69 is
then transmitted to 64-bit register 65.

The output data strings of Ci (ciphertext) are provided from
IV/OR/CTR register 79 (one per channel) as output data by
way of the 4x64 bit mux 66. The output data strings of Ci are
used as input data to calculate the GHASH (H, A, C) in
GHASH modules 61 (or GHASH engine 32, shown in FIG.
3.

The output of 4x64 bit mux 66 and the output of register 65
are coupled to the 4 GHASH modules 61 (one per channel) by
way of multiplexer 63. The outputs of 4x64 bit mux 66 and
register 65 are also coupled to 4 FIFO registers 62 (one per
channel) by way of multiplexer 64. The multiplexer 63 pro-
vides the Ci data strings or the AAD (plaintext) to GHASH
modules 61 to perform the Galois multiplication (see FIG. 4).
The multiplexer 64 provides the plaintext/ciphertext as an



US 9,209,967 B2

11

output by way of FIFO registers 62. The HASH key is pro-
vided as an output by way of key/cbc-data mux/register 67 to
the SA memory for storage.

Referring next to FIG. 7, there is shown an exemplary
GHASH engine, generally designated as 90. There may be up
to 4 such GHASH engines. The GHASH engine 90 includes
ghash controller 91, GHASH alignment module 95, GMULT
module 101, ghash configuration module 103 and GHASH
interface module 107. The ghash controller 91 receives con-
trol data for storage in control registers 92. The sequence of
the state machine is tracked in flow fsm module 93, while the
control of GMULT module 101 is provided by control logic
module 94.

The GHASH alignment module 95 receives data blocks of
ciphertext (Ci), which is computed in AES engine 31 (FIG. 3).
At the same input data bus, GHASH alignment module 95
also receives the AAD bits (A,). The data blocks are sent to
alignment module 97 by way of pipeline 96, and are byte-
enabled in register 98. After byte alignment, a 128 bits are
provided to register 100. When necessary, multiplexer 99
pads some of the bits with zero bits, which are received from
padding module 102.

The ciphertext and/or the AAD bits are provided to
GMULT module 101 for performing multiplication of the
ciphertext and/or the AAD with the hash key. There may be up
to four hash keys stored in the SA memory (one per channel).
The controller logic module 94 starts to GHASH multiplica-
tion. As shown, the hash key (one, up to four hash keys) is
provided to the GMULT module by way of key register 104.
It will be understood that the hash key has already been
computed by AES engine 31 (FIG. 3) and stored in SA
memory 34. Accordingly, when the ciphertext data is received
by GHASH alignment module 95, the hash key is ready for
use by GMULT module 101 by way of key register 104.

Result of the hash multiplication is outputted to MAC
register 105. Thus, the GHASH (H, A, C), which is defined by
X,, is outputted by way of multiplexer 106 and data output
register 109, under control of address register 108. The final
computation of the authentication tag T is performed else-
where upon XOR-ing of the GHASH (H, A, C) with the
E(K,Yo) (see FIG. 4).

Referring next to FIG. 8, there is shown a method for
authenticating a packet of data in accordance with an exem-
plary embodiment of the present invention. As shown, step
141 provides a key exchange between the sender and the
receiver. In this manner, the encryption key (cipher key) K is
obtained. Such key exchange may be performed, for example,
once every 100 packets, or once every 1000 packets. Step 142
then calculates the GHASH key H using AES engine 31 (FIG.
3). The hash key H is calculated by performing key expan-
sions using ten rounds of expansions on the cipher key K (10
clock cycles) for a 128 bit cipher key, or 12 rounds (12 clock
cycles) for a 192 bit cipher key, or 14 rounds (14 clock cycles)
fora 256 bit cipher key. Step 143 saves the received cipher key
K and the computed hash key H in SA Memory 34 (FIG. 3).

After the cipher key K and the hash key H are saved in the
SA memory, step 144 uses a logic controller to enable the
packet flow input into AES engine 31. Step 145 performs the
encryption using the AES-CTR mode of operation. Finally,
step 146 authenticates the packet by way of GHASH engine
32 (FIG. 3) using the Galois multiplier.

In a similar manner, FIG. 9 shows a method for authenti-
cating an encrypted packet of data at the receiver’s end, in
accordance with an exemplary embodiment of the present
invention. As shown, step 151 provides a key exchange
between the sender and the receiver. In this manner, the
decryption key (decipher key) K is obtained. Such key

25

30

35

40

45

12

exchange may be performed, for example, once every 100
packets, or once every 1000 packets. Step 152 then calculates
the GHASH key H using AES engine 31 (FIG. 3). The hash
key H is calculated by performing key expansions using ten
rounds of expansions on the decipher key K (10 clock cycles)
for a 128 bit decipher key, or 12 rounds (12 clock cycles) for
a 192 bitdecipherkey, or 14 rounds (14 clock cycles) fora256
bit decipher key. Step 153 saves the received decipher key K
and the computed hash key H in SA Memory 34 (FIG. 3).

After the decipher key K and the hash key H are saved in the
SA memory, step 154 uses a logic controller to enable the
encrypted packet flow input into AES engine 31. Step 155
performs the decryption using the AES-CTR mode of opera-
tion. Finally, step 156 authenticates the packet by way of
GHASH engine 32 (FIG. 3) using the Galois multiplier.

Although the invention is illustrated and described herein
with reference to specific embodiments, the invention is not
intended to be limited to the details shown. Rather, various
modifications may be made in the details within the scope and
range of equivalents of the claims and without departing from
the invention.

What is claimed:
1. An authenticated encryption method comprising the
steps of:

(a) receiving, by an Advanced Encryption Standard (AES)
engine, a cipher key;

(b) computing, by the AES engine, a hash key using the
received cipher key prior to receiving a packet of data;

(c) storing the computed hash key in a storage memory
prior to receiving the packet of data;

(d) receiving, by the AES engine, the packet of data;

(e) encrypting, by the AES engine, the packet of data using
the received cipher key;

(D) receiving the hash key, by a GHASH engine, from the
storage memory,

(g) authenticating the packet of data, by the GHASH
engine, using the hash key;

(h) receiving one or more other packets of data; and

(1) authenticating the one or more other packets of data, by
the GHASH engine, using the stored hash key.

2. The method of claim 1 wherein

the encrypting step includes using a counter mode in the
AES engine to encrypt the packet of data.

3. The method of claim 2 wherein

using the counter mode includes iteratively XOR-ing (a) a
plaintext portion of the packet of data with (b) an
encrypted value of counter data using the cipher key, and
thereby obtaining a ciphertext of data.

4. The method of claim 1 wherein

the authenticating step includes

transmitting the ciphertext to the GHASH engine, and

iteratively multiplying the ciphertext, by the GHASH
engine, using the hash key.

5. The method of claim 1 wherein

encrypting the packet of data is performed after the hash
key is stored in the storage memory.

6. The method of claim 1 further including the step of:

enabling flow of the packet of data, after the hash key is
stored in the storage memory.

7. The method of claim 6 wherein

after enabling the flow of the packet of data, encrypting the
packet of data using the encryption key, by the AES
engine, and

after enabling the flow of the packet of data, authenticating
the packet of data, using the hash key stored in the
storage memory, by the GHASH engine.



US 9,209,967 B2

13

8. The method of claim 1 wherein

computing the hash key includes performing 10 rounds of
key expansion on the received cipher key, if the received
cipher key is a 128 bit block of data, and

computing the hash key includes performing 12 rounds of
key expansion on the received cipher key, if the received
cipher key is a 192 bit block of data, and

computing the hash key includes performing 14 rounds of
key expansion on the received cipher key, if the received
cipher key is a 256 bit block of data.

9. The method of claim 1 wherein

receiving the cipher key includes receiving at least two
separate cipher keys from respective data channels, and

computing the hash key includes computing at least two
separate hash keys corresponding to the at least two
separately received cipher keys.

10. The method of claim 1 wherein

receiving the packet of data includes receiving during an
interval of time a predetermined number of packets of
data,

calculating the hash key includes calculating the hash key
once per the interval of time, and

storing the computed hash key includes storing the com-
puted hash key once per the interval of time.

11. An authenticated decryption method comprising the

steps of:

(a) receiving, by an Advanced Encryption Standard (AES)
engine, a cipher key;

(b) computing, by the AES engine, a hash key using the
received cipher key prior to receiving a packet of data;

(c) storing the computed hash key in a storage memory
prior to receiving the packet of data;

(d) receiving, by the AES engine, the packet of data;

(e) decrypting, by the AES engine, the packet of data using
the received cipher key;

(f) receiving the hash key, by a GHASH engine, from the
storage memory,

(g) authenticating the packet of data, by the GHASH
engine, using the hash key;

(h) receiving one or more other packets of data; and

(1) authenticating the one or more other packets of data, by
the GHASH engine, using the stored hash key.

12. The method of claim 11 wherein

the decrypting step includes using a counter mode in the
AES engine to decrypt the packet of data.

13. The method of claim 11 wherein

decrypting the packet of data is performed after the hash
key is stored in the storage memory.

5

10

15

20

25

30

35

40

45

14

14. The method of claim 11 further including the step of:

enabling flow of the packet of data, after the hash key is
stored in the storage memory.

15. The method of claim 14 wherein

after enabling the flow of the packet of data, decrypting the
packet of data using the encryption key, by the AES
engine, and

after enabling the flow of the packet of data, authenticating
the packet of data, using the hash key stored in the
storage memory, by the GHASH engine.

16. An authenticated encryption module comprising:

an Advanced Encryption Standard (AES) engine for using
a cipher key to compute a hash key prior to receiving a
packet of data,

a storage memory configured to store the computed hash
key, and

a GHASH engine configured to receive the computed hash
key stored in the storage memory for authenticating the
packet of data and one or more other subsequent packets
of data,

wherein (a) the AES engine encrypts the packet of data to
form ciphertext, (b) the GHASH engine receives the
ciphertext from the AES engine to multiply the received
ciphertext with the computed hash key, and (¢) an
authentication tag is computed using the multiplied
ciphertext with the computed hash key.

17. The module of claim 16 including

a controller for enabling input flow of the packet of data,
after the computed hash key is stored in the storage
memory.

18. The module of claim 16 wherein

the packet of data includes additional authenticated data
(AAD), and

the GHASH engine is configured to receive the AAD to
multiply the AAD with the computed hash key.

19. The module of claim 16 wherein

the AES engine is configured to receive at least two differ-
ent encryption keys from respective data channels, and

the AES engine includes two encryption modules for
encrypting at least two different packets of data received
from the respective data channels using the at least two
different encryption keys.

20. The module of claim 16 wherein

the hash key is computed by the AES engine once for
multiple packets of data received, and

the hash key is stored in the storage memory once for all the
received multiple packets of data.

#* #* #* #* #*



